NCIE
   
 

 

How are robots contributing to the fight against coronavirus?

Coronavirus has now reached more than 20 countries. The disease has yet to be declared a pandemic but the medtech industry is already stepping up with solutions to contain its spread. What Using a robot equipped with a camera, microphone and stethoscope, the patient has been able to consult with clinicians without coming into direct contact with them.
Providence Regional Medical Center chief of infectious diseases Dr George Diaz told  “The nursing staff in the room move the robot around so we can see the patient in the screen, talk to him.”
This isn’t the only robot that’s being used to interact with quarantined people. A hotel in Hangzhou is being used to isolate more than 300 people suspected to have the virus, and has been using a robot to deliver food to their bedrooms. The hotel guests were on the same flight as travellers from Wuhan, and will remain in the hotel for two weeks as a precautionary measure. Multiple food delivery robots have been deployed on all 16 stories of the hotel.
Likewise in Guangzhou City, at the Guangdong Provincial People’s Hospital, autonomous delivery robots are being used to transport drugs around the hospital. The robots are loaded up with medicines and given instructions of where in the hospital to go to, and then head to their destination unaided. They’re able to open and close doors and take the lift without any human assistance.
One robot is able to carry out the delivery tasks of three people, making the entire drug delivery process faster and reducing the risk of clinical staff contracting 2019-nCoV and spreading it throughout the hospital. 

Hong Kong scientists have developed a rapid coronavirus diagnostic device

Hong Kong scientists have developed a portable device that can quickly and effectively diagnose a new coronavirus infection in 2019-nCoV in just 40 minutes. The device has already begun to be used in a number of cities in China, including Hubei, which is in the center of the epidemic. "We have sent it to many places and hope that people will use it," said Ven Veitszyan from the Hong Kong University of Science and Technology, who analyzes samples of the organism's liquid effluents. Earlier this same group of Hong Kong researchers produced similar devices for the rapid diagnosis of bird flu and swine flu.

Mismanaged waste 'kills up to a million people a year globally

Mismanaged waste is causing hundreds of thousands of people to die each year in the developing world from easily preventable causes, and plastic waste is adding a new and dangerous dimension to the problem. Municipal waste frequently goes uncollected in poorer countries and its buildup fuels the spread of disease. Between 400,000 and 1 million people are dying as a result of such mismanaged waste, according to the charity Tearfund.
While mismanaged waste has been a problem for decades, the growth of plastic pollution, , which does not break down in the environment, is adding a fresh set of problems to an already dire situation. Plastic waste is blocking waterways and causing flooding, which in turn spreads waterborne diseases. When people burn the waste to get rid of it, it releases harmful toxins and causes air pollution.
Every second, a double-decker busload of plastic waste is burned or dumped in developing countries, the report found. When some plastics deteriorate, they can leach harmful chemicals into the environment and break down into microplastics, with effects that are still poorly understood and largely undocumented in poorer countries.

Can artificial intelligence be taught how to joke?

Lately, machines have been proving themselves as good as or even superior to people with certain tasks: they are already better in Go, Chess, and even Dota 2. Algorithms compose music and write poetry. Scientists and entrepreneurs estimate that artificial intelligence will greatly surpass human beings in the future.
A large part of what makes us human is our humor, and even though it’s believed that only humans can crack jokes, many scientists, engineers, and even regular people wonder: is it possible to teach AI how to joke?

Compared to composing music, it’s hard to describe what makes us laugh. Sometimes, we can hardly explain what exactly amuses us and why. Many researchers believe that a sense of humor is one of the last frontiers artificial intelligence needs to conquer to truly match human beings. Research shows us that a sense of humor started developing long ago in people in the course of mate selection.
This can be explained by the direct correlation between intellect and a sense of humor. Even today, someone’s sense of humor can show us the level of their intellect. The ability to joke requires such difficult skills as language proficiency and a keen range of vision. In fact, a good command of language is especially important for certain individual pools of humor (British, for example) based primarily on word play. All in all, teaching artificial intelligence how to joke is no easy task. Researchers from around the world are trying to teach artificial intelligence how to make jokes. 

Software company founded by US-Armenian businessman secures $30m in venture capital giving product away                 

Evolution Media, the investment arm of the well-known and influential Creative Artists Agency (CAA), has made a $30 million investment in Epic!, a consumer-facing, five-year-old education technology company.
Epic! is a digital reading platform, an online library of sorts, for kids 12 and under. It boasts more than 35,000 books, audio books and videos from 250 publishers including big brand names such as Sesame Street and National Geographic.

And while the company is unquestionably consumer-oriented, selling a subscription service for $7.99 a month for unlimited access, Epic! gives the service away to teachers and schools. Making it free at school, for schools, definitely increased brand awareness, said Suren Markosian, co-founder and CEO. “Early on we knew that teachers using it, adapting it was important. And they are our most active audiences,” he said. 

AUA and PicsArt announce the launch of the AI Lab

The American University of Armenia (AUA) and PicsArt have announced the collaborative launch of an Artificial Intelligence (AI) Lab that will employ faculty and students to conduct cutting-edge research in machine learning and computer vision. This offers AUA students the unique opportunity to gain research experience in addition to applied software engineering skills greatly valued by companies in the IT field. AUA and PicsArt have been working together to create a new model that will promote science and research while growing academic and professional capacity in the domain of AI.
“Artificial Intelligence is quickly evolving all over the world and I think it is the right time to set the scene here, in Armenia. We are very happy to launch the AI Lab in collaboration with PicsArt to enhance research in the field of AI. I am anticipating to see how this new initiative will take us a step forward into a center of excellence and surprise other countries,” noted AUA President Dr. Karin Markides. The AI Lab will employ two members of the AUA faculty, lead researchers, and about 15 undergraduate students from AUA’s Akian College of Science and Engineering (CSE) majoring in computer and data science. The students will be trained to conduct both applied and fundamental research in machine learning and computer vision. AUA professors and machine learning professionals from PicsArt will begin training in January 2020. After a six-week training course, the best performing students will be hired by the AI Lab. “I am really excited about this project for three main reasons: my background in AI, deep connection to AUA, and prospects for Armenia. PicsArt is all about making awesome and I hope that together with AUA we can make AI awesome in Armenia. I believe this is just the first step of our collaboration and we can do much more together,” noted Hovhannes Avoyan (M PSIA ’95), Founder of PicsArt Inc. and AUA Corporation Trustee. PicsArt believes in the potential of the AUA students and is excited to provide engineering students with the opportunity for continuous learning in an academic environment, while also solving real-world challenges, based on real data and collaboration with industry experts. As AI is a fast-growing domain, it is extremely important that undergraduates studying in this or other related fields get a high-quality education and gain advanced research skills that will make them competitive in the job market. The new AI Lab will allow students to explore immense opportunities in research; learn how to experiment with cutting-edge tools and technologies; receive advanced tailored training and mentorship from local and international faculty and industry experts. They will be able to apply their knowledge to real big data sets, and offer solutions for a globally leading application. The students will also get competitive compensation for work that enriches, deepens, and accelerates their learning experience at AUA. Both PicsArt and AUA believe there is immense untapped potential for collaboration between academia and industry. The AI Lab is one example of innovative models and processes that will increase mutual trust and greatly contribute to the value generation and human talent capacity development.

Russia, Japan join hands for lunar robot

Russian and Japanese companies are planning to jointly design a robot to operate on the lunar surface next year.
Russia's Tass News Agency reported that Android Technology Company from Russia and Japan's GITAI reached a tentative agreement when the Japanese company's representatives visited Russia last week.
"Colleagues from Japan are thinking in approximately the same direction as we do, eyeing step-by-step design of robotic systems to explore the near and far space," said Yevgeny Dudorov, executive director of Android Technology.
"We both identify the moon-or, in other words, robotic systems that could function and perform tasks on the moon surface-as our primary target," he said.
According to Dudorov, GITAI specializes in anthropomorphic robots and uses controllers similar to those developed by Android Technology.
The device allows one to operate robots in the "avatar" mode, during which it would mimic the actions of a human controller to perform certain manipulations.
"We will sign a cooperation agreement. Later, we will outline joint plans for 2020, 2021 and later," Dudorov said, adding that the deal with Japan would be signed soon.

Mass balance of the Greenland Ice Sheet from 1992 to 2018

In recent decades, the Greenland Ice Sheet has been a major contributor to global sea-level rise1,2, and it is expected to be so in the future. Although increases in glacier flow 4–6 and surface melting 7–9 have been driven by oceanic 10–12 and atmospheric 13,14 warming, the degree and trajectory of today’s imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. Although the ice sheet was close to a state of balance in the 1990s, annual losses have risen since then, peaking at 335 ± 62 billion tonnes per year in 2011. In all, Greenland lost 3,800 ± 339 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.6 ± 0.9 millimetres. Using three regional climate models, we show that reduced surface mass balance has driven 1,971 ± 555 billion tonnes (52%) of the ice loss owing to increased meltwater runoff. The remaining 1,827 ± 538 billion tonnes (48%) of ice loss was due to increased glacier discharge, which rose from 41 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. Between 2013 and 2017, the total rate of ice loss slowed to 217 ± 32 billion tonnes per year, on average, as atmospheric circulation favoured cooler conditions 15 and as ocean temperatures fell at the terminus of Jakobshavn Isbræ16. Cumulative ice losses from Greenland as a whole have been close to the IPCC’s predicted rates for their high-end climate warming scenario17, which forecast an additional 50 to 120 millimetres of global sea-leve l rise by 2100 when compared to their central estimate.

AI genome scanner says Denisovans could live until 38 years old

Artificial intelligence may be able to estimate the maximum lifespans of extinct species and early humans. The technique relies on analysing specific regions of DNA that are linked to ageing.
Benjamin Mayne at the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia and his colleagues built an AI to predict the lifespan of different animals. To do this, they first trained an AI on the known genomes of 252 species from five classes of animals, including mammals, reptiles and fish, and their maximum lifespans.
The AI then narrowed down almost 30,000 DNA regions to just 42 that related to lifespan. These were then used to create a formula that can convert them into a prediction of maximum lifespan.
The researchers tested the AI on some extinct species. It estimated that the woolly mammoth could live for up to 60 years and Denisovans, a mysterious extinct cousin of modern humans, could live for about 38 years.
The researchers also found that Pinta Island tortoises could live to be 120 years old. Lonesome George, the last known individual of the species, is estimated to have been more than 100 at death. And the oldest bowhead whale is thought to have lived to 211, but the model predicts the species could live to 268.

Ocean temperature reaches record high

The temperature of oceans hit a record high in 2019, the fifth consecutive year of reaching a record, according to a study published in Advances in Atmospheric Sciences. "The upward trend is relentless, and so we can say with confidence that most of the warming is man-made climate change," says Kevin Trenberth, a scientist at the National Center for Atmospheric Research.